Estimating Noise and Dimensionality in BCI Data Sets: Towards Illiteracy Comprehension
نویسندگان
چکیده
About one third of the BCI subjects cannot communicate via BCI, a phenomenon that is known as BCI illiteracy. New investigations aiming to an early prediction of illiteracy would be very helpful to understand this phenomenon and to avoid hard BCI training for many subjects. In this paper, the first application on to electroencephalogram (EEG) of a newly developed machine learning tool, Relevant Dimension Estimation (RDE), is presented. Detecting the label relevant information present in a data set, RDE estimates the intrinsic noise and the complexity of the learning problem. Applied to EEG data collected during motor imagery paradigms, RDE is able to deliver interesting insights into the illiteracy phenomenon. In particular RDE can demonstrate that illiteracy is mostly not due to the non-stationarity or high dimensionality present in the data, but rather due to a high intrinsic noise in the label related information. Moreover, in this paper is shown how to detect individual BCI-illiterate subjects in a very reliable way, based on a combination of the several features extracted by RDE.
منابع مشابه
EEG Based Brain Computer Interface Hand Grasp Control: Feature Extraction Method MTCSP
Brain-Computer Interfaces (BCIs) are communication systems, which enable users to send commands to computers by using brain activity only; this activity being generally measured by Electroencephalography (EEG). BCIs are generally designed according to a pattern recognition approach, i.e., by extracting features from EEG signals, and by using a classifier to identify the user’s mental state from...
متن کاملMachine-Learning Based Co-adaptive Calibration: Towards a Cure for BCI illiteracy
Brain-Computer Interfaces (BCIs) allow users to control a computer application by brain activity as acquired, e.g., by EEG. In our classic Machine Learning approach to BCIs, the participants undertake a calibration measurement without feedback to acquire data to train the BCI system. After the training, the user can control a BCI and improve the operation through some type of feedback. However,...
متن کاملHigh Theta and Low Alpha Powers May Be Indicative of BCI-Illiteracy in Motor Imagery
In most brain computer interface (BCI) systems, some target users have significant difficulty in using BCI systems. Such target users are called 'BCI-illiterate'. This phenomenon has been poorly investigated, and a clear understanding of the BCI-illiteracy mechanism or a solution to this problem has not been reported to date. In this study, we sought to demonstrate the neurophysiological differ...
متن کاملMultiscale Estimation of Intrinsic Dimensionality of Data Sets
We present a novel approach for estimating the intrinsic dimensionality of certain point clouds: we assume that the points are sampled from a manifold M of dimension k, with k << D, and corrupted by D-dimensional noise. When M is linear, one may analyze this situation by SVD: with no noise one would obtain a rank k matrix, and noise may be treated as a perturbation of the covariance matrix. Whe...
متن کاملApplying the Mahalanobis-Taguchi System to Vehicle Ride
The Mahalanobis Taguchi System is a diagnosis and forecasting method for multivariate data. Mahalanobis distance is a measure based on correlations between the variables and different patterns that can be identified and analyzed with respect to a base or reference group. The Mahalanobis Taguchi System is of interest because of its reported accuracy in forecasting small, correlated data sets. Th...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2008